Journal of Chromatography, 198 (1980) 287-292 Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM. 12,983

GAS CHROMATOGRAPHIC AND GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC CHARACTERISATION OF METHANE THIOLSULPHO-NATES CARRYING FURTHER FUNCTIONAL GROUPS

DAVID L. CORINA*, DAVID P. BLOXHAM and GARY K. COOPER

Department of Biochemistry, School of Biochemical and Physiological Sciences, University of Southampton, Southampton SO9 3TU (Great Britain) (Received May 22nd, 1980)

SUMMARY

A further group of methane thiolsulphonates have been characterised by gas chromatography (GC) and GC-mass spectrometry (MS). These compounds contain additional functional groups and have the general structure $CH_3SO_2S(CH_2)_nR$ (Type III) and $CH_3SO_2SCH_2CO(CH_2)_nR$ (Type IV). Although in a few cases some decomposition on GC to the respective sulphones was observed, all samples gave characteristic mass spectra and all but one could be characterised by combined GC-MS. Certain aspects of the GC and MS behaviour are briefly discussed.

INTRODUCTION

The characterisation¹ and application in enzyme studies² of some thiolsulphonates and bisthiolsulphonates have recently been described. These and other studies^{3,4} have shown that these compounds are generally amenable to characterisation by gas chromatography- mass spectrometry (GC-MS) and MS. A further group of thiolsulphonates has been synthesised in our laboratory. These new compounds are thiolsulphonates in which additional functional groups are separated from the methanethiolsulphonate moeity by methylene chains of varying lengths. Their characterisation by GC-MS is described in this report. These new compounds are broadly classified into two further structural types (for types I and II, see ref. 1):

Гуре III	Type IV
0	0
11	1
CH ₃ SS(CH ₂) _a R	CH ₃ SS·CH ₂ CO·(CH ₂) _n R
ll	
Ο	0

Individual structures are shown in Table I. It was found that during both GC and direct probe analyses, compounds 6, 7 and 8 showed a variable (pyrolytic?) loss of sulphur to form the corresponding sulphone. GC and MS data from these sul-

0021-9673/80/0000-0000/S02.25 © 1980 Elsevier Scientific Publishing Company

TABLE I

STRUCTURES AND GC RETENTION TIMES (ON OV-I) OF METHANE THIOLSUL-PHONATES AND SULPHONES

Number	r Compound structure	Oven temperature (°C)	Retention time (min) (min)
1A	CH ₃ SO ₂ S(CH ₂) ₃ OH	170	3.8
1B	CH ₃ SO ₂ S(CH ₂) ₃ OTMS*	170	4.1
2A	CH ₃ SO ₂ S(CH ₂) ₅ COOH	220	3.9
2B	CH ₃ SO ₂ S(CH ₂) ₅ COO CH ₃	220	3.5
2C	CH ₃ SO ₂ S(CH ₂) ₅ COO TMS	220	5.0
	. CH ₃	140	4.5
3	CH ₃ SO ₂ S(CH ₂) ₅ CO·NH·CH·COOCH ₂ CH ₃	140	4.5
4	CH3SO2S(CH2)5COON		
5	$CH_3SO_2S(CH_2)_3O \cdot OC \longrightarrow N_3$	130	5.0
DA TD	$CH_3SO_2SCH_2CO \cdot (CH_2)_2COOCH_3$		
9B	$CH_3SO_2CH_2CO(CH_2)_2COOCH_3$	160	5.4
A	$CH_3SO_2SCH_2CU(CH_2)_6CUCH_2CI$	270	4.2
В	CH ₃ SO ₂ CH ₂ CO(CH ₂) ₆ COCH ₂ CI	270	5.8
A	$CH_3O_2O_3CH_2CU(CH_2)_{14}CH_3$		
5	$CH_3 = CU(CH_2)_{14}$ CH_3	230	3.0
	HS. $CH_2 CO (CH_2)_{14} CH_3$	250	5.7
8D)	$[-3-CH_2CU(CH_2)_{14}CH_3]_2$	250	16.5

* TMS = trimethylsilyl.

** Parent compounds did not elute.

phones are included for completeness because of their significance in characterisation. Compound 8 elutes from the GC only as the sulphone. Some aspects of the mass spectra of sulphones have been described.

EXPERIMENTAL

Specific synthetic details and enzyme studies will be reported elsewhere; however, in outline the synthetic routes are similar to that described for bismethanethiolsulphonates².

For analysis, the compounds were freshly dissolved in acetone or methylene chloride. GC and GC-MS conditions were as described previously¹ using an OV-1 column; the GC column temperatures are listed in Table I. Identities of GC decomposition products were initially obtained by GC-MS and this identification is used in Table I. All the compounds gave satisfactory analyses without the need for reduction to the thiol, but mass spectra for "intact" 4, 6A and 8A were obtained only by direct probe.

GC-MS OF METHANE THIOLSULPHONATES

RESULTS

Gas chromatography

The retention times of compounds 1 to 5, 6B, 7A, 7B, 8B and 8C are summarised in Table I. Structures of compound 4, and the parent compounds 6A and 8A are also included; these did not elute unchanged from the GC. Structures 6B, 7B, 8B and 8C represent the major identified decomposition products, attributed to pyrolytic loss of sulphur on injection. Approximate proportions of the major peaks were as follows: 6B = 95%; 7A = 35%; 7B = 45%; 8B = 60%; 8C = 20%; 8D (see Discussion) = 10%. Other minor peaks (<10%) were observed; these were not analysed. Compounds 1 to 5 gave clean traces with little evidence of decomposition.

MS and combined GC-MS

Mass spectra were obtained for all compounds listed in Table I. Normalised partial spectra are given in tabular form (Table II) including the molecular ion (where present) and a 10-ion listing from m/z 50, inluding base peak. The list is biased towards diagnostic peaks at higher mass rather than high abundance, but less unique, ions at lower mass. Molecular ions are absent in some cases but these samples produced diagnostic peaks at high mass, due to loss of simple fragments.

Some features of the individual spectra are outlined below; M - 79 and M - 111 were observed except where noted.

Compound 1. A, small M⁺, base peak m/z 91 (M - 79), small peak at m/z 137, showing an unexpected loss of SH. 1B no M⁺ (M - 15 present), otherwise predictable fragmentation.

Compound 2. A, no M⁺; base peak at m/z 64, probably SO₂, an unusual finding for these compounds. 2B and C, base peaks m/z 129 [C₆H₉OS]⁺, probably cyclic.

Compound 3. M⁺ present. Shows combination of predictable fragments with the base peak the well documented cyclic ion $[C_5H_9S^+]$ at m/z 101 and similar peaks at m/z 129, 131 $[C_6H_{11}OS]^+$ and 231 [M - (79 + 15)].

Compound 4 (probe only). M^+ absent, base peak m/z 101. Prominent peaks from succinimide moiety (m/z 99 and 115) and also m/z 129 from the central portion of the molecule.

Compound 5. M⁺ present, but not M – 79. Azide characterised by M – 28 at m/z 287 and peaks from phenyl azide⁵ at m/z 90, 91, 118, 134. Other peaks at 73 (base, C₃H₅S⁺) and 153 [M – OOC PhN₃].

Compound 6. A, M⁺ absent, base peak m/z 115 formed by cleavage at the ketone, as is m/z 129 in this compound $[CH_2CO(CH_2)_2CO_2CH_3]^+$; 6B, M⁺ present, other fragments corresponding to those from 6A with the addition of m/z 149 [M - COOCH₃]⁺.

Compound 7. The 2,9-diketone structure gave complex spectra, the predominant fragmentations were due to McLafferty rearrangements giving peaks at m/z 191, 168, 136 and 137, together with simple α -cleavage with loss of \cdot CH₂Cl or CH₃SO₂(S)CH₂ to give m/z 189, 233 and 264. The peak at m/z 111 is probably $[(CH_2)_3CHCO]^+$ (see Discussion). Also found were the ion series $[CH_3SO_2(CH_2)_n]^+$ at m/z 93, 107, 121 and 135 in 7B, and a weaker series in 7A ascribed to $[CH_3SO_2S(CH_2)_n]^+$ at m/z 125, 139 and 153. The values of the lower mass ions in this series thus imply that there has been an elision of CO from the chain. Some un usual fragments at high mass (m/z 266-264, 250-248) in 7A await further study.

+W															
VI	1B	2.1	2B	2C	3	4	S	61	6B	VL	7.B	81	8.B	ßC	
m/z I	m/z I	1 z/m	m/2 I	m/z 1	m/z 1	m/z I	I 2/m	m/z 1	m/z I	m/z I	m/z I	m/z I	m/z I	m/z	1
170 0.69	242 —	226 -	240	298	325 1.9	323 -	315 4.9	240 -	208 1.1	314	282 5.7	364 0.50	332 1.2	286	6:1
153 0.81	227 56	209 8.0	209 12	283 38	252 46	244 18	287 11	209 1.6	177 5.8	264 3.3	233 73	332 3.3	252 65	256	1.1
139 3.6	169 80	161 20	161 23	219 28	246 28	209 55	224 12	194 3.0	176 2.2	248 3.8	191 22	285 4.8	239 13	239	8
137 1.0	163 43	147 21	129 100	187 6.6	231 9.8	145 3.9	153 26	179 4.3	149 22	191 40	189 15	252 96	234 22	137	1.8
125 3.9	147 7.7	129 90	127 33	171 70	209 12	131 16	146 23	161 6.6	129 3.2	189 37	149 26	239 82	194 19	123	3.5
112 13	137 21	127 18	101 47	169 48	200 8.9	129 65	137 14	129 11	121 1.8	169 11	137 22	234 39	149 21	111	2.8
106 2.1	135 14	113 33	97 7.2	137 74	159 16	116 16	134 28	123 5.3	115 100	149 20	125 58	194 30	136 85	109	2.9
91 100	133 25	101 45	95 17	129 100	129 13	115 15	118 49	115 100	97 11	137 15	121 28	149 20	121 18	95	13
90 44	115 9.1	95 20	87 53	117 24	118 96	101 100	106 28	88 45	88 45	121 16	111 48	137 75	111 2	85	ž
79 30	103 39	81 89	85 35	101 26	101 100	99 25	90 86	83 79	87 17	111 100	107 58	125 40	97 51	83	14
64 47	73 100	001 64 100	67 40	75 64	1 67 70	87 30	73 100	65 14	79 45	69 71	69 100	57 100	57 10	12	43

TEN-ION LISTING OF MASS SPECTRAL PEAKS FROM METHANE THIOLSULPHONATES AND SULPHONES TABLE II

i

:

Compound 8 (8A probe only). All showed M^+ , although of low intensity. Base peak of m/z 57 in 8A and 8B is a hydrocarbon fragment. The peak at M - 80 (m/z252) in 8B is the only instance of hydrogen transfer, presumably influenced by the long hydrocarbon chain, to the eliminated methanesulphonyl group. This transfer is common in sulphonates⁶. Present also is m/z 111. The spectrum of 8C is dominated by α -cleavage to the keto group to give a base peak at m/z 239 through loss of HSCH₂. This is the only important peak at high mass.

DISCUSSION

Gas chromatography

All compounds except 4 produced peaks on the GC. Pyrolytic loss of sulphur (during injection) appears to be preferred to $SO_2 loss^{7.8}$ and also to the loss of $[CH_3SO_2]$ as observed previously¹ in SS'-polymethylenebis (methanethiolsulphonates). Thermal loss of $[CH_3SO_2]$ is observed only in the 8A–8C transition. A later eluting minor peak in the 8 group was tentatively identified by MS as the disulphide, 8D [-SCH₂CO-(CH₂)₁₄CH₃]₂ presumably from oxidation and cyclisation of 8C, but was not studied further.

Loss of sulphur from 7 was also observed on direct probe analyses (see below). Thermal loss of sulphur in type IV compounds may be attributable to the keto group in close proximity to the thiolsulphonate group; no sulphur loss was observed in 1-5. Loss of sulphur from 8A was so facile that no unchanged 8A eluted from the GC. The presence of a long hydrocarbon chain may also be influencial in these decompositions, *e.g.* 8A and 8C. The loss of [CH₃SO₂] from polymethylenethiolsulphonates¹ similarly increases with increasing methylene chain $\frac{1}{2}$ SO₂CH₃, when n > 8]. Pyrolytic decomposition and disproportionation of thiolsulphonates, usually resulting in loss of SO₂, is known from other chemical studies⁹ and has been used in synthetic sequences.

Mass spectrometry

The spectra in general showed major fragments similar to those found previously^{1,3} or formed by predictable or established pathways. Hydrocarbon ions also were prominent in the long-chain compounds.

The tendency of type IV compounds to undergo thermal loss of sulphur on GC was mirrored by their behaviour on the heated direct probe. For example, the decomposition of 7A to 7B with parallel appearance of peaks due to free sulphur (S8)¹⁰ was observed.

An alternative mode of sulphur loss, that occurring as a fragmentation process, is apparently preferred over the loss of SO₂ (except in 2A) observed in sulphonates⁶ and certain thiolsulphonates^{7,11,12}. That this loss is sulphur (and not O₂) is shown by subsequent loss of mass 79 [CH₃SO₂], other fragments and S isotope peaks. Loss of mass 79 and 111 [CH₃SO₂S] was observed from the appropriate compounds. However, a peak appearing at mass 111, in 7 and 8, not normally observed in thiolsulphonates so far examined, has an identity different from [CH₃SO₂S] because the methane sulphonyl group is not normally charge-retaining⁴. The peak at m/z 111 is also present in those compounds where one sulphur has already been eliminated and is associated with those compounds which, in addition, contain a ketone group. A probable identity is C₆H₁₁CO.

The presence of a carbonyl group, especially in the longer-chain compounds, also suppresses the high intensity cyclic sulphide ions, but enhances ions formed via McLafferty rearrangements, and simple hydrocarbon ions. In addition to the predicted cyclic sulphur-containing ions at m/z 73, 87, 101 a further group of ions, containing the keto group, was found at m/z 129 [C₆H₉OS]⁺, 131 [C₆H₁₁OS]⁺ and a series of [CH₃SO₂(S)(CH₂)_n]⁺ or [CH₃SO₂SCH₂(CO)(CH₂)_n]⁺ were found for structures containing the keto grouping.

Smaller peaks from rearrangements and elisions are fairly numerous. The high propensity of sulphur compounds for rearrangements is well known, and where such a rearrangement ion is intense and diagnostically useful, it has been included in Table II. Complete assignments were not attempted in this study, some were ambiguous at low resolution and would require elucidation using higher resolution or isotopes. Certain similarities were seen with simple ethane and higher alkyl thiolsulphonates^{1,3}; however other previously reported peaks^{3,4,11} from thiolsulphonates were not observed, possibly because of the relatively complex nature of the acylthiol moieties and a predominance of peaks from these. Mass spectra of the sulphones (6B, 7B and 8B) showed general similarities to those of the thiolsulphonates from which they were derived and to published fragmentation behaviour¹³ of sulphones. The major peaks are listed in Table II.

ACKNOWLEDGEMENTS

We thank Mrs. Kathy Ballard for invaluable assistance with the GC-MS measurements. The work was supported by the Science Research Council.

REFERENCES

- 1 D. L. Corina, D. P. Bloxham and R. P. Sharma, J. Chromatogr., 168 (1979) 435.
- 2 D. P. Bloxham and R. P. Sharma, Biochem. J., 181 (1979) 355.
- 3 E. Block, M. D. Bentley, F. A. Davis, I. B. Douglass and J. A. Lacadie, J. Org. Chem., 40 (1975) 2770.
- 4 W. G. Filby, K. Guenther and R. -D. Penzhorn, Z. Naturforsch. B., 31 (1976) 463.
- 5 P. D. Woodgate and C. Djerassi, Tetrahedron Lett., (1970) 1875.
- 6 W. E. Truce, R. W. Campbell and G. D. Madding, J. Org. Chem., 32 (1967) 308.
- 7 S. W. Benson, Chem. Rev., 78 (1979) 23.
- 8 A. J. Bridgewater and M. D. Sexton, J. Chem. Soc., Perkin Trans. II, (1978) 530.
- 9 J. W. A. M. Janssen and H. Kwart, J. Org. Chem., 42 (1977) 1530.
- 10 K. -H. Grupe, K. Hellwig and L. Kolditz, Z. Phys. Chem., 255 (1974) 1015.
- 11 S. Kozuka, H. Takahashi and S. Oae, Bull. Chem. Soc. Jap., 43 (1970) 129.
- 12 J.-L. Derocque and M. Jochem, Org. Mass Spectrom., 12 (1977) 479.
- 13 J. J. Bowie, D. H. Williams, S. -O. Lawesson, J. O. Madsen, C. Nolde and G. Schroll, Tetrahedron, 22 (1966) 3515.